

असाधारण

EXTRAORDINARY

भाग II—खण्ड 3—उप-खण्ड (i) PARTII—Section 3—Sub-section (i) प्राधिकार से प्रकाशित PUBLISHED BY AUTHORITY

सं. 310]

नई दिल्ली, सोमवार, जून 13, 2011/ज्येष्ठ 23, 1933

No. 310]

NEW DELHI, MONDAY, JUNE 13, 2011/JYAISTHA 23, 1933

पर्यावरण और वन मंत्रालय

अधिसूचना

नई दिल्ली, 13 जून, 2011

सा.का.नि. 446(अ),—केन्द्रीय सरकार, पर्यावरण (संरक्षण) अधिनियम, 1986 (1986 का 29) की धारा 6 और धारा 25 द्वारा प्रदत्त शक्तियों का प्रयोग करते हुए, पर्यावरण (संरक्षण) नियम, 1986 का और संशोधन करने के लिए निम्नलिखित नियम बनाती है, अर्थात् :—

- 1. (1) इन नियमों का संक्षिप्त नाम पर्यावरण (संरक्षण) (पाचवां संशोधन) नियम 2011 है।
 - (2) ये राजपत्र में उनके प्रकाशन की तारीख से प्रवृत्त होंगे।
- 2. पर्यावरण (संरक्षण) नियम, 1986 की अनुसूची I में,
 - (i) क्रम संख्या 71, 'नाशकजीवमार उद्योग' के संबंध में तथा उससे संबंधित प्रविष्टियों का लोप किया जाएगा ।
 - (ii) क्रम संख्या 101, 'नाशकजीवमार उद्योग के लिए भस्मित्र संयंत्र' के संबंध में तथा उससे संबंधित प्रविष्टियों का लोप किया जाएगा; और
 - (iii) क्रम संख्या 40, 'नाशकजीवमार विनिर्माण और सूत्रण उद्योग' और उससे संबंधित प्रविष्टियों के स्थान पर निम्नलिखित संख्यांक और प्रविष्टियां रखी जाएंगी, अर्थात :—

क्र. सं.	उद्योग	पैरामीटर	मानक
(1)	(2)	(3)	
"40	नाशकजीवमार उद्योग		(4) र्जन मानक
			सान्द्रण सीमा मि.ग्रा./नार्मल घनमीटर
		HCI	20
		Cl ₂	5
		H₂S	5
		P ₂ O ₅ , H ₃ PO ₄ के रुप में	10
		NH ₃	30

	1)	(2)	(3)		(4)	
			विविक्त कणों के रूप में नाशकजीव	मार यौगिक	20	
			CH₃CI		20	
	4	ar yar	HBr		5	
		*4	ख. ৰ	हिस्राद् मानक		
					pH और जैव निर्धारण	
					परीक्षण को सीमा छोडकर	
) t	<		सान्द्रण मि.ग्रा./ली. में	
				नेवार्य पैरामीटर		
			pH		6.5-8.5	
			BOD, 3 दिन, 27 ⁰	विनिर्मिति	30	
			सेल्सियस पर	इकाई		
,			.,	तकनीकी	100	
				इकाई		
			तेल और ग्रीस	•	10	
			निलम्बित ठोस कण		100	
			जैव निर्धारण परीक्षण		100 प्रतिशत बहिस्राव में	
					96 घंटे के बाद 90 प्रतिशत	
					मछलियां जीवित	
			(2) अतिरिक्त पैरामीटर			
			आर्सेनिक (As के रुप में)		0.2	
			ताँबा		1.0	
			मैंग्निज		1.0	
			पारद		0.01	
			एन्टीमनी (Sb के रुप में)		0.1	
			जस्ता		1.0	
			निकिल, इत्यादि (व्यष्टिक रुप में भ	ारी धातुएं)	भारतीय मानक ब्यूरों के	
					पेयजल मानकों के अनुसार	
					वैयक्तिक रुप से पाँच बार	
			(0)		से अधिक नहीं	
		-	साइनाइड (CN के रूप में)	:	0.2	
			नाइट्रेट (NO3 के रुप में)		50	
			फास्फेट (P के रूप में)		5.0	
			फिनॉल एवं फिनॉलिक योगिक C ₆ 1	⊣₅ OH के	1.0	
		-	रुप में			
			·			

`[(1)	(2)	(3)	(4)
			गन्धक	0.03
			बेन्जीन हेक्साक्लोराइड (BHC)	0.01
		ļ	कारबोनाइल	0.01
			कॉपर सल्फेट	0.05
			कॉपर ऑक्सीक्लोराइड	9.6
			डी.डी.टी.	0.01
-			डाइमेथोएट	0.45
			2,4 डी	0.4
			एन्डोसल्फान	0.01
			फेनिटोथ्रीऑन	0.01
			मैलाथियान	0.01
			मिथाइल पेराथियन	0.01
		·	पैराक्वाइट	2.3
			फेनाथोएट	0.01
			फोरेट	0.01
			प्रोपेनिल	7.3
	.		पायरीथ्रमस	0.01
		-	जीरम	1.0
			अन्य नाशकजीवमार (व्यष्टिक रुप में)	0.10
			जैव निर्धारण परीक्षण IS: 6582-1971 के अनुसार	संचालित किया जाएगा ।
			टिप्पण:	
			 संबंधित राज्य प्रदूषण नियंत्रण बोर्ड/प्रदूषण निकायों की उर्ध्वप्रवाह धारा जिसमें बहिसाव के जल उपयोग के आधार पर कुल घुलनशील क्लोराइड की सीमा निर्धारित कर सकती हैं। रासायनिक आक्सीजन मांग (COD) की कोई उपचारकृत बहिसाव में इसको मॉनीटर कि बहिसाव में COD का स्तर 250 मि.ग्रा./ली तो ऐसे बहिसाव का प्रवाह करने वाली औद्योगियाम/ लीटर COD कारित करने वाले रह अपेक्षित है। यदि ये कारक परिसंकटमय अपेक्षित है। यदि ये कारक परिसंकटमय और आयात नियम, 1989 की अनुसूची-। में की क्षेणी में उसे जाते हैं, तो संबंधित राज्य बो 	हा निपटान किया जाएगा, में ठोस (TDS), सल्फेट और सीमा विहित नहीं है, किन्तु या जाएगा । यदि शोधित टर से अधिक अवस्थित है, गेक इकाइयों से 250 मिली सायनों की पहचान करना रसायन विनिर्माण, संग्रहण निर्धारित की गई विषालुता ई /प्रदष्ण नियंत्रण समिति
<u></u>			ऐसे मामलों 🖫 उद्योगों को 31 दिसम्बर, 2012 त	क तृतीयक अवजल

	(1)	(2)		(3)		(4)		
		·	उपचार प्रणाली स्था	पित करने का निर्देश	दे सकते हैं।			
			3. "अतिरिक्त पैरा	3. "अतिरिक्त पैरामीटरों" के रूप में सूचीबद्ध पैरामीटरों को				
			मामला आधार पर	मामला आधार पर प्रक्रिया और उत्पाद के आधार पर विहित किया जाएगा ।				
				ग. भरिमत्र के उर्त्सर				
-				जब तक कथित				
					न हो सान्द्रण	कथित न हो,		
					सीमा मि.ग्रा./	सेम्पलिंग		
Ì					नार्मल घन	अवधि मिनटों		
					मीटर तक	में		
					समिति			
•			विविक्त	कण	50	30 अथवा		
						अधिक		
						(लगभग 300		
						लीटर उर्त्सजन		
	٠					की सेम्पलिंग)		
			HC		50	30		
			SO	-	200	30		
	•		CO		100	दैनिक औसत		
			कुल जैविक		20	30		
			कुल डायक्सीन एवं	मौजूदा भस्मित्र	0.2 ng	८ घंटे		
			फूरॉन्स*	संयंत्र	TEQ/Nm³			
ŀ				नयू भस्मित्र संयंत्र	0.1 ng	8 घंटे		
					TEQ/Nm³	,		
			Sb+As+Pb+Cr+Co	+Cu+Mn+Ni	1.5	2 घंटे		
			+∨ और उनके यौगिक					
			* विधमान भरिमत्र संयेत	* विधमान भरिमत्र संयंत्र 18 अगस्त, 2013 से डायक्सीन और फूरॉन्स के लिए				
			0.1 ng TEQ/Nm° a	0.1 ng TEQ/Nm³ के मानकों का अनुपालन करेंगे।				
1.								
			टिप्पण:					
		•	1 1197			_		
			1. सभी प्रबोधन वि	किए गए माना का ठीक किया जाय ।	शुष्कं आधार फ	र 11 प्रतिशत		
					 			
			2. उत्सर्जित गैस में होगी।	्रा ८∪2 का सान्द्रता	/ प्रातशत स क	म स कम नहीं		
			ן וויוס					
L						i		

(1)	(2)	(3)
		3. अपशिष्ट में हेलोजिनेटिड जैविक अपशिष्ट का भार एक प्रतिशत से कम
		होने की स्थिति में एकल चैम्बर अपशिष्ट का भार एक प्रतिशत से कम
		होने की स्थिति में एकल चैम्बर भस्मीकरण की सभी सुविधाओं को
		11000 सेंटीग्रेड के न्यूनतम तापमान को प्राप्त करने के लिए डिजाइन
		किया जाएगा । फ्लूडाइजड बैड टेक्नालाजी भस्मित्र संयंत्र में तापमान
		950⁰ सेंटीग्रेड रखा जाएगा ।
		4. अपशिष्ट में हेलोजिनेटिज जैविक अपशिष्ट, वजन में 1% से अधिक
		होने पर केवल दो चैम्बर वाले भस्मित्र संयेत्र में अपिशष्ट का भस्मित्र
		किया जाएगा तथा प्राइमरी चैम्बर में 850 <u>+</u> 25° सैंटीग्रेड और सेकेन्डरी
		कम्बशन चैम्बर में 1100° सैंटीग्रेड न्यून्तम तापमान बनाए रखा जा सके
		जिसके लिये सेकेण्डरी कम्बशन चैम्बर मैं गैस अवरोध समय दो
		सेकेण्ड से कम नहीं रहेगा।
		 भिस्मित्र संयंत्र के उत्सर्जन मार्जन के लिए जो मार्जक हैं, उनका उपयोग
		क्वेन्चर के रूप में नहीं किया जाएगा।
		 भिस्मित्र संयंत्र (कम्बशन चैम्बर्स) को ऐसे तापमान, अवरोधन समय
		और उथल-पुथल के साथ चलाया जाएगा ताकि अपशिष्ट और
		भस्मीकरण राख में कुल जैविक कार्बन (TOC) यौगिक 3% से कम
		हो और इसकी भस्मीकरण क्षय की मात्रा शुष्क आधार पर 5% से कम
		हो । गैर-अनुपालन के मामले में राख और अपशिष्ट का दुबारा
		भस्मीकरण किया जाएगा।
		 भिस्मित्र संयंत्र के लिए चिमनी कम से कम तीस मीटर उंची होगी।
		घ. भस्मित्र से बहिस्राव
		टिप्पण:
		(1) अपजल (मार्जक और तल धुलाई) से उत्पन्न बहिस्राव ढकी हुई नाली
		या पाइप नेटवर्क के माध्यम से बहाया जाएगा और इसका शोधन
		पर्यावरण (संरक्षण) नियम, 1986 के अधीन अधिसूचित पर्यावरण
		प्रदूषकों के विसर्जन के लिए सामान्य मानक (भाग-क: बहिस्राव) के
		साथ ऊपर भाग 'ख' में उल्लिखित बहिस्राव मानकों के अनुरूप किया
		जाएगा।
		(2) तल धुलाई अपजल में कुल घुलित ठोस (TDS) की मात्रा अपरिष्कृत
		जल में TDS की मात्रा से 1000 मि.ग्रा./लीटर से अधिक नहीं होगी।
		·

	ड. वर्षा जल
	टिप्पण:
	(1) वर्षा जल को मार्जक जल और/अथवा तलधुलाई अपजल के
	साथ मिलाने के लिए अनुमति नहीं दी जाएगी।
	(2) उद्योग की अंतसीमा के वर्षा जल को वर्षा के 10 मिनट की
•	संग्रहण क्षमता (घंटे का औसत) के एच.डी.पी.ई. परत वाले
٠	गर्त के माध्यम से अलग नाली के द्वारा बहाया जाएगा।"

[फा. सं. क्यू-15017/07/2008-सी.पी.डब्ल्यू.] रजनीश दुबे, संयुक्त सचिव

दिष्पण: - मूल नियम, भारत के राजपत्र में सं. का.आ. 844 (अ), 19 नवम्बर, 1986 द्वारा प्रकाशित किए गए थे; और तत्पश्चात सं.का.आ. 443(अ), तारीख 18 अप्रैल, 1987; और अभी हाल में सा.का.नि. 512 (अ), तारीख 9 जुलाई, 2009; सा.का.नि. 543(अ), तारीख 22 जुलाई, 2009; सा.का.नि. 595 (अ), तारीख 21 अगस्त, 2009; सा.का.नि. 794 (अ), तारीख 04 नवम्बर, 2009; सा.का.नि. 826 (अ), तारीख 16 नवम्बर, 2009; सा.का.नि. 01 (अ), तारीख 1 जनवरी, 2010; सा.का.नि. 61 (अ), तारीख 5 फरवरी, 2010; सा.का.नि. 485 (अ), तारीख 9 जून, 2010; सा.का.नि. 608 (अ), तारीख 21 जुलाई, 2010; सा.का.नि. 739 (अ), तारीख वारीख 9 सितम्बर, 2010; सा.का.नि. 809 (अ), तारीख 4 अक्टूबर, 2010; सा.का.नि. 215 (अ), तारीख 15 मार्च, 2011; सा.का.नि. 221 (अ), तारीख 18 मार्च, 2011; सा.का.नि. 354, तारीख 2 मई, 2011; और सा.का.नि. 424(अ)तारीख 1 जून, 2011 द्वारा किए गए।

MINISTRY OF ENVIRONMENT AND FORESTS NOTIFICATION

New Delhi, the 13th June, 2011

GS.R. 446(E).— In exercise of the powers conferred by sections 6 and 25 of the Environment (Protection) Act, 1986 (29 of 1986), the Central Government hereby makes the following rules further to amend the Environment (Protection) Rules, 1986, namely:-

- 1. (1) These rules may be called the Environment (Protection) (Fifth Amendment) Rules, 2011.
 - (2) They shall come into force on the date of their publication in the Official Gazette.
- 2. In the Environment (Protection) Rules, 1986, in Schedule I,-
 - (i) serial number 71 relating to 'Pesticides Industry' and entries relating thereto shall be omitted;
 - (ii) serial number 101 relating to 'Incinerator for Pesticide Industry' and entries relating thereto shall be omitted; and
 - (iii) for serial number 40 relating to 'Pesticide Manufacturing and Formulation Industry' and entries relating thereto, the following serial number and entries shall be substituted, namely:-

S.No.	. Industry Parameter		Standard		
(1)	(2)		(3)	(4)	
((10			A. Emission	Standards	
"40	Pesticide			Limiting concentration in	
	Industry			mg/Nm³	
			HCl	20	
			Cl ₂	5	
			H_2S	5	
		P_2O_5	as H ₃ PO ₄	10.	
		NH ₃		30	
		Pesticides compo	unds in the form of	20	
	particulate matter		en e		
İ		C	H ₃ Cl	20	
			HBr	5	
			B. Effluent St	andards	
				Limiting concentration in mg/l,	
		***************************************		except for pH and Bioassay test	
			(i) Compulsory Pa	rameters	
	}	pH		6.5-8.5	
		BOD ,3days,	Formulation unit	30	
	-	27°C	Technical grade unit	100 .	
ļ	-		d Grease	10	
			nded Solids	100	
		Bioas	say Test	90 percent survival of fish after	
				96 hours in 100% effluent*	

	(1)	(2)	(3)	(4)
			(ii) Additional Pa	arameters
			Arsenic (as As)	0,2
			Copper	1.0
			Manganese	1.0
			Mercury	0.01
			Antimony (as Sb)	0.1
			Zinc	1.0
			Nickel, etc.(heavy metals individually)	Shall not exceed individually 5
				times the drinking water
	÷			standards as per Bureau of
				Indian Standards
			Cyanide (as CN)	0.2
			Nitrate (as NO ₃)	50
			Phosphate (as P)	5.0
			Phenol & Phenolic Compounds as C ₆ H ₅ OH	1.0
			Sulphur	0.03
			Benzene Hexachloride (BHC)	0.01
		•	Carbonyl	0.01
			Copper Sulphate	0.05
		,	Copper Oxychloride	9.6
			DDT	0.01
			Dimethoate	0.45
			2,4D	0.4
			Endosulfan	0.01
			Fenitothrion	0.01
			Malathion	0.01
			Methyl Parathion	0.01
			Paraquat	2.3
			Phenathoate	0.01
			Phorate	0.01
			Proponil	7.3
			Pyrethrums	0.01
ļ			Ziram	1.0
			Other Pesticide (individually)	0.10
			*Bioassay Test shall be carried out as per	r IS: 6582-1971.
			Note:	

- 1. The concerned State Pollution Control Board / Pollution Control Committee shall prescribe limits of Total Dissolved Solids (TDS), Sulphates and Chlorides depending on the usages of recipient water body in down stream, in which effluent shall be disposed off.
- 2. No limit for Chemical Oxygen Demand (COD) is prescribed but, COD in the treated effluent shall be monitored. If COD is persistently reported more than 250 mg/l, the industrial units discharging such an effluent shall be required to identify chemicals

			रत का राजपत्र : असाधार	1		
(1)	(2)	(3)				
		Chemicals Rules, 1989, the Board/ Pollution Control Comindustries to install tertiary treat		e are found to be toxic, as defined in e, Storage and Import of Hazardous concerned State Pollution Control mittee in such cases shall direct the ment system by 31 st March, 2012.		
			listed as "Additions pon the process and LEmission Standar	HILIMITE OR 0 0000 4-	l be prescribed case basis.	
			John Standar	Limiting	Sampling	
		•		concentration in mg/Nm³, unless stated	Duration in minutes,	
		Particul	ate Matter	50	unless stated 30 or more	
		Ti	(0)		(for sampling of 300 litres of emission)	
	-		ICI	50	30	
	-		O ₂	200	30	
				100	Daily average	
	T	Total organic otal Dioxins and	·	20	30	
	F	urans *	Existing Incinerator	0.2 ngTEQ/Nm ³	8 hours	
	Si	b + As + Pb + Cr + C	New Incinerator	0.1 ngTEQ/Nm ³	8 hours	
	+	v and their compo	unde	1.5	2 hours	
	No i. ii. iii.	* The existing plas 0.1 ngTEQ/Note: All monitored values The CO ₂ concentration of the facilities and all the fac	ant shall comply wide Nm³ by 18 th August, we shall be corrected attention in tail gas shall ted organic waste is acilities in single achieve a minimum fluidized bed to be maintained at 950 d organic waste is make the incinerated only ties shall be designed to the complete of the comp	d to 11% oxygen on I not be less than 7% less than 1% by we chamber incineraton temperature of 11 echnology based °C. ore than 1% by weight in twin chamber igned to achieve a	dry basis. ight in input rs shall be 00°C in the incinerator, tht in input ncinerators minimum	

	(1)	(2)	(3)
			combustion chamber not less than two seconds.
			v. Scrubber meant for scrubbing emissions shall not be used as quencher.
			vi. Incineration plants shall be operated (combustion chambers) with such temperature, retention time and turbulence, as to achieve Total Organic Carbon (TOC) content in the incineration ash and residue less than 3%, and their loss on ignition is less than 5% of the dry weight. In case of non-conformity, ash and residue as the case may be, shall be re-incinerated.
			vii. The incinerator shall have a chimney of atleast thirty metres height.
			D. Effluent from Incinerator
ŀ	. :		Note:
			(i) Effluent from scrubber (s) and floor washings shall flow through closed conduit or pipe network and be treated to comply with the effluent standards mentioned at 'B' above, read with Schedule VI: General Standards for Discharge of Environment Pollutions (Part A: Effluents) notified under the Environment (Protection) Rules, 1986.
			(ii) The built up in TDS in wastewater or floor washings shall not exceed 1000 mg/l over and above the TDS of raw water used.
			E. Stormwater
1			Note:
			(i) Stormwater shall not be allowed to mix with scrubber water and/or floor washings.
			(ii) Stormwater shall be channelized through separate drains passing through a HDPE lined pit having holding capacity of 10 minutes (hourly average) of rainfall.".

[F. No. Q-15017/07/2008-CPW] RAJNEESH DUBE, Jt. Secv.

Note: The principal rules were published in the Gazette of India vide number S.O. 844 (E), 19th November, 1986; subsequently amended vide S.O. 433 (E), dated 18th April 1987; and recently amended vide G.S.R. 97(E), dated the 18th February, 2009; G.S.R. 149 (E), dated the 4th March, 2009; G.S.R. 512(E), dated the 9th July, 2009; G.S.R. 543 (E), dated the 22th July, 2009; G.S.R. 595(E), dated the 21st August, 2009; G.S.R. 794 (E), dated the 4th November, 2009; G.S.R. 826 (E), dated the 16th November, 2009; G.S.R. 01 (E), dated the 1st January, 2010; G.S.R, 61(E), dated 5th February, 2010; G.S.R. 485 (E), dated 9th June, 2010; G.S.R. 608 (E), dated 21st July, 2010; G.S.R. 739 (E), dated the 9th September, 2010; G.S.R, 809 (E), dated, 4th October, 2010; G.S.R. 215(E), dated, the 15th March, 2011; G.S.R. 221(E), dated, the 18th March, 2011; G.S.R. 354 (E), dated, the 2nd May, 2011; and G.S.R. 42.4 (E), dated the 1st June, 2011.